专利摘要:
一種電漿處理腔室及用以操作電漿處理腔室的方法。一例示性的電漿處理腔室,包括:一靜電夾具,用以接納一基板;及一介電體窗,連接至該電漿處理腔室的一頂部。該介電體窗之一內側係面對位在該靜電夾具之上方的一電漿處理區域且該介電體窗的一外側係位在該電漿處理區域的外部。一組內與外線圈,設置在該介電體窗之外側的上方,而該組內與外線圈係連接至一第一RF電源。一充電柵,設置在該介電體窗之外側與該組內與外線圈之間,而充電柵係連接至與該第一RF電源無關的一第二RF電源。
公开号:TW201316399A
申请号:TW101120984
申请日:2012-06-12
公开日:2013-04-16
发明作者:mao-lin Long;Alex Paterson;Richard Marsh;Ying Wu
申请人:Lam Res Corp;
IPC主号:H01J37-00
专利说明:
電漿腔室之充電柵
本發明係關於一種半導體生產技術,更詳言之,關於一種設備,其具有維護電感耦合電漿蝕刻設備之介電體窗的狀態之充電柵。
在半導體製造中,經常且重覆地進行蝕刻處理。有兩種蝕刻處理是熟悉本項技藝者所熟知,即濕式蝕刻與乾式蝕刻。一種乾式蝕刻為利用電感耦合電漿蝕刻設備進行的電漿蝕刻。
電漿含有各種自由基、電子、以及正與負離子。利用各種自由基、正離子、及負離子所發生的化學反應蝕刻晶圓的特徵部、表面及材料。在蝕刻處理期間,腔室線圈產生類似於變壓器之初級線圈的作用,而電漿則產生類似於變壓器之二次側線圈的作用。
蝕刻處理所產生的反應產物為揮發性或非揮發性。揮發性的反應產物將經由排氣部而隨著使用過的反應氣體排出。然而,非揮發性的反應產物典型地將以可觀的量殘留在蝕刻腔室之中。非揮發性的反應產物將附著於腔壁與介電體窗。非揮發性的反應產物附著於介電體窗將妨礙蝕刻處理。過多的堆積將造成從介電體窗的片狀剝落而使微粒落在晶圓之上,因而妨礙蝕刻處理。因此,過多的堆積將需要更頻繁的清洗腔壁與介電體窗,而這將不利地影響晶圓產能。此外,如果介電體窗變成覆蓋有導電性的蝕刻副產物的話,腔室將足夠的磁通量傳遞到電漿的能力將變弱,而這接著將造成蝕刻操作之指向性的控制能力的降低,這在處理大縱橫比輪廓的特徵部時將有關鍵的影響。
有鑑於此,需要一種用以保護處理腔室之介電體窗的設備與方法,同時維持傳遞充分等級的磁通量給電漿之能力。
本發明係揭露一種在半導體裝置的製造期間、用於蝕刻半導體基板與形成在其上之各層的設備。該設備係由在其中進行蝕刻的腔室所界定而成。該設備係包括一夾具,用以支撐待蝕刻之基板、與RF功率及接地端的連接關係、一介電體窗,位在腔室的上頂部之中、及一射頻(RF)線圈,設置在介電體窗之上方。
又,一充電柵係設置在腔室之中。充電柵為設置在腔室之外部的結構,且使其連接至與供應給線圈之功率無關的一RF功率。在一實施例中,充電柵為形成在基板之上方的金屬層。將基板設置在介電體窗之上方且將RF線圈設置在充電柵之上方。
本發明係提供一種電漿處理腔室。該電漿處理腔室包括一靜電夾具,用以接納一基板、及一介電體窗,連接至該電漿處理腔室的一頂部。該介電體窗之內側係面對位在該靜電夾具之上方的一電漿處理區域且該介電體窗的一外側係位在該電漿處理區域的外部。一組內與外線圈,設置在該介電體窗之外側的上方,而該組內與外線圈係連接至一第一RF電源。一充電柵,設置在該介電體窗之外側與該組內與外線圈之間。使該充電柵連接至與該第一RF電源無關的一第二RF電源。
在另一實施例中,提供一種電漿處理用的腔室。該腔室包括一外殼、及一夾具,用以支撐位在該外殼之中的一晶圓。一外殼頂部,由一介電體窗所界定而成的該外殼的頂部、及一充電柵,設置在該介電體窗之上方。一組TCP線圈,設置在該充電柵之上方。一RF功率,與該組TCP線圈呈無關地連接至該充電柵。
在另一實施例中,揭露一種晶圓的處理方法,用於在一電漿蝕刻腔室之中處理晶圓。該晶圓的處理方法包含:一第一RF功率的施加步驟,施加一第一RF功率於該電漿蝕刻腔室之一上介電體窗的上方,其中將該第一RF功率施加於一組內與外線圈。一第二RF功率的施加步驟,將一第二RF功率施加於設置在該組內與外線圈與該介電體窗之間的一充電柵。該晶圓的處理方法包含一第一RF功率的設定步驟,與設定該第二RF功率呈無關地設定該第一RF功率。由該第二RF功率所施加的一頻率與一功率等級係不同於由該第一RF功率所施加的一頻率與一功率等級。
在一實施例中,將該第二RF功率的頻率設定在1.5MHz與2.5MHz之間的一低頻率,且根據從該充電柵所視來自該電漿蝕刻腔室之中受處理電漿之負載,調節該第二RF功率的頻率。
在一實施例中,其中以瓦特為單位的該第二RF功率的功率等級係可與以瓦特為單位的該第一RF功率的功率等級呈無關地進行調整。
如果沒有像在此所定義般地最佳化充電柵的話,由蝕刻材料與蝕刻化學物所引起的沈積物將更易於附著於介電體窗的內表面,而這最終將影響RF線圈的能力而無法對產生在腔室之中的電漿給予足夠的能量與控制。這種影響包括電漿之中的離子密度的降低、離子密度之徑向控制的降低、及其它處理降低的缺點。例如,耐火性金屬的蝕刻將導致相當多的沈積物沈積在腔室的介電體窗之上,且這些導電性沈積物(隨著它們的累積)將越來越妨礙磁場的耦合而無法從激發線圈變成電漿。這將導致電漿密度的降低、處理漂移、且最終造成無法引發感應的電漿。再者,雖然某些處理性能的降低在過去的腔室架構之中是可被接受的,但縮小特徵部尺寸的需求已持續地對處理性能有更嚴格之允差的要求。隨著特徵部尺寸的縮小,將因而有相稱地蝕刻極大之縱橫比的特徵部之需求。
因此,隨著特徵部尺寸持續變小到次微米處理節點且更小時,將不再容許蝕刻設備性能隨著時間發生漂移。進一步影響本問題的是:對高產能之互補的生產需求,及較不費時地進行設備的清洗操作。
以下參照附圖所示之本發明的一些實施例,俾詳細說明本發明。在以下說明之中,為了提供對本發明之徹底瞭解,故提到許多特定的細節。然而,熟悉本項技術之人士可明顯瞭解:本發明將可在無某些或無這些所有的特定的細節的情況下據以實施。在其它情況下,為了免於不必要地混淆本發明,故將省略有關熟知之處理步驟及/或結構的詳細說明。
本發明係揭露一種在半導體裝置的製造期間、用於蝕刻半導體基板與形成在其上之各層的設備。該設備係由在其中進行蝕刻的腔室所界定而成。將TCP線圈設置在腔室之介電體窗的上方,且將充電柵設置在介電體窗與TCP線圈之間。與供應給TCP線圈的功率呈分離且無關地對充電柵加以充電。在以下說明之中,為了提供對本發明之徹底瞭解,故提到許多特定的細節。然而,熟悉本項技術之人士可明顯瞭解:本發明將可在無某些或無這些所有的特定的細節的情況下據以實施。在其它情況下,為了免於不必要地混淆本發明,故已省略有關熟知之處理操作及實施細節的詳細說明。
由於對能長期資料保存、高速的ON/Off運作、較快的寫入速度、與不受限制的讀寫耐久性的非揮發性隨機存取記憶體之需求的增加,MRAM(磁性隨機存取記憶體)逐漸成為有希望取代SRAM(靜態隨機存取記憶體)、DRAM(動態隨機存取記憶體)、快閃記憶體元件、及電池之各種組合的候選者,以對大型系統提供具有顯著縮短之啟動時間的快速、低功率、非揮發性儲存器。雖然MRAM為非揮發性記憶體,但MRAM之電漿蝕刻的副產物通常為非揮發性,就字面而言,為導電性。當MRAM處理之蝕刻副產物沈積在導體蝕刻腔室之中的介電體窗時,TCP RF的功率效率將由於逐漸地沈積在介電體窗之上的副產物所形成的導電膜之遮蔽效應而降低。TCP功率效率的降低將導致電漿密度變差,且在某些情況下,將造成對一晶圓的處理到對另一晶圓的處理發生處理漂移。因此,腔室清洗間隔的平均時間(MTBC)係極短。舉例而言,在某些用以處理MRAM的蝕刻腔室之中,當偏壓RF功率的電壓模式下降達約15%時,MTBC約為5RF小時。
藉由在電漿蝕刻腔室之中實現充電柵108,在介電體窗之上的沈積之影響將不再是決定MTBC的因素。如以下之圖1A所示,將充電柵108(外部地)設置在介電體窗106之上方時,充電柵108將獨立地由TCP線圈120/122所提供之功率所充電。此獨立的功率係在低頻率下起作用且被調節成電漿,這將使充電柵108得以減少或消除附著於介電體窗之內側的非揮發性金屬副產物。
在此所述之「獨立」的用語應該被理解為用以界定以下狀況,即施加於TCP線圈的RF功率係具有其本身的瓦特及頻率之功率等級,且施加於充電柵108的RF功率則具有其本身的瓦特及頻率之功率等級。因此,(施加於TCP線圈之)第一RF電源的設定係與(施加於充電柵之)第二RF電源的設定無關。在一實施例中,由第二RF電源所施加的頻率與功率等級係不同於由第一RF電源所施加的頻率與功率。
就其本身而言,介電體窗106之較不頻繁的清洗為吾人所需,且這將能達成較長的MTBC,而這將能提高蝕刻操作的一致性及產能。再者,當充電柵108作動時,其將具有對(面對著電漿之)介電體窗106進行在線清洗及/或離線清洗的作用,故從對一晶圓之處理到對另一晶圓之處理的處理性能將實質相同。
在一實施例中,使充電柵108位在腔室之介電體窗的上方。在一例子中,腔室為導體電漿蝕刻腔室,例如,由美國加州佛利蒙之蘭姆研究公司所製造的Kiyo45TM。然而,吾人必須瞭解的是:充電柵108係可以被附設於由任何製造商所製造的電漿腔室,而在介電體窗之上方提供獨立的RF功率。如圖1A所示,將充電柵108界定在基板107之上。使充電柵108與基板107位在TCP線圈之下方。雖然所示之架構呈平板狀,但亦可實現充電柵108(適當地成型)於其它形狀之頂部功率架構,例如圓頂架構,而提供改善的性能。
在一實施例中,經由匹配網路與RF產生器而以2MHz對充電柵108加以充電。將施於充電柵108的RF功率調整到適用於寬闊之處理介電體窗的等級,俾能使撞擊介電體窗的離子具有正確的能量,足以在處理期間線上地保持介電體窗的乾淨及/或足以在清洗步驟期間離線地濺射掉沈積在介電體窗之上的蝕刻副產物。依此方式,在處理每一晶圓時,皆可清洗介電體窗至約相同的程度,故可消除從對一晶圓之處理到對另一晶圓之處理所發生的處理漂移。在藉由物理性的濺射進行在線與離線清洗時,亦可結合柔性著陸步驟(組)及特定/適當的化學物而加速清洗結果,且同時保護介電體窗免於受濺射的影響並防止微粒的產生。
利用充電柵108而使電漿蝕刻可達到最佳化的腔室係可用以蝕刻任何數目的材料。無限制地,某些材料的例子包括:Pt、Ir、PtMn、PdCo、Co、CoFeB、CoFe、NiFe、W、Ag、Cu、Mo、TaSn、Ge2Sb2Te2、InSbTeAg-Ge-S、Cu-Te-S、IrMn、Ru。此概念可延伸至如NiOx、SrTiOx、鈣鈦礦氧化物(CaTiO3)、PrCAMnO3、PZT(PbZr1-xTixO3)、(SrBiTa)O3材料。
圖1A顯示根據本發明之一實施例的蝕刻操作用的電漿處理系統。此系統包括腔室102,而腔室102則包括夾具104、介電體窗106、及充電柵108。夾具104為靜電夾具,用以支撐存在的基板。圖1A亦顯示出圍繞夾具104的邊緣環116,當晶圓存在於夾具104之上方時,其上表面將與晶圓之頂面約呈共平面。腔室102亦包括下襯套110,其耦合於上襯套118。上襯套118有時亦被稱為腔室的塔狀部。將上襯套118構成為支撐介電體窗106與充電柵108。在一實施例中,使上襯套118耦合於接地端。
如圖所示,充電柵108具有柵狀圖案,係藉由形成在基板107之上方的金屬材料界定出充電柵。基板107為介電體,且界定在基板之上方的柵狀圖案係可呈現任何數目的幾何架構。無限制地,如以下的圖式所示,將充電柵108界定呈延伸在介電體窗106的中心區域與其外徑之間的輻條之形式。因此,介電體窗與充電柵108係延伸至處理期間形成有電漿之區域的上方,且將其設置於設計用以在處理期間支撐晶圓之夾具104的上方。輻條之間的開口間隙為充電柵的金屬部分不存在的區域。在其間具有開口間隙的情況下,亦可設置任何非輻條的金屬幾何圖案。
又,亦顯示出RF產生器160,而其可由一或更多之產生器界定而成。如果設置複數之產生器的話,將可利用不同的頻率而達成各種調節特性。使偏壓匹配器162耦合在RF產生器160與界定出夾具104之組件的導電板(亦稱為下電極)之間。夾具104亦可包括足以夾持且鬆放晶圓的靜電電極。廣泛而言,係設置濾波器164與DC夾具電源。雖然未圖示,但亦可設置冷卻用、及將晶圓從夾具104頂起用的其它控制系統。雖然未圖示,但可使泵浦連接至腔室102,俾能在運作的電漿處理期間進行真空控制且從腔室排除氣體的副產物。
充電柵108係具有一中央區域,其得以使蓮蓬頭輸送處理氣體到腔室102的處理空間之中。此外,亦可穿過設有孔部之充電柵108的中央區域之附近而設置其它探測設備。設置探測設備,俾能在操作期間探測與電漿處理系統相關的處理參數。探測處理係包括端點偵測、電漿密度量測、及其它測量的探測操作。由於典型之晶圓的幾何形狀通常為圓形,故充電柵108亦被界定呈圓形。熟知地,晶圓典型地呈各種尺寸,例如200mm、300mm、450mm等等。此外,依據在腔室102之中所進行的蝕刻操作,亦可能是方形基板或較小的基板等其它形狀。
藉由陶瓷或石英類材料界定出介電體窗106。介電體窗106係具有面對著電漿之處理區域的內側、及位在腔室之外部的外側。只要能夠承受半導體蝕刻腔室之狀態,亦可採用其它的介電體材料。典型地,腔室在升高的溫度下,約攝氏50度至約攝氏120度或更高的溫度之間的範圍內,進行操作。此溫度係取決於蝕刻處理操作與特定的配方。又,腔室102亦將在真空狀態下,約1米托耳(mT)至約100米托耳(mT)的範圍內,進行操作。雖然未圖示,但典型地將腔室102耦合於裝配在無塵室之中的設施、或生產設施。這些設施包括提供處理氣體、真空、溫度控制、及環境的微粒控制之管路系統。
當裝配在指標的生產設施之中時,使這些設施耦合於腔室102。此外,使腔室102耦合於傳送腔室,而這將使機械手臂得以利用典型之自動化設備將半導體晶圓傳入且傳出腔室102。
再參照圖1A,所示之TCP線圈係包括內線圈(IC)122,及外線圈(OC)120。將TCP線圈設置且配置在充電柵108之上方,而充電柵108則分別地位在介電體窗106之上方。在相對於介電體窗106之上方的徑向位置處界定出TCP線圈的內結構與其外結構,且TCP功率係可利用控制調節電路單元124加以調節。
在一實施例中,使TCP線圈耦合於控制調節電路124,而控制調節電路124則包括與內線圈120及外線圈122的連接。如圖所示,使外線圈120的外迴路耦合於節點146,而接著使節點146連接到可變電容器136。在使可變電容器136連接到匹配元件128與RF產生器126之前,先將可變電容器136設置在節點146與節點144之間。使外線圈120的內迴路連接至節點142,而使節點142連接到電容器132。使電容器132耦合在接地端與節點142之間。內線圈122係具有連接至節點140的外迴路,而接著使節點140連接到可變電容器134。
使可變電容器134耦合在節點140與節點144之間。使內線圈122之內迴路的內迴路耦合於節點148。節點148係耦合於電感器130,而電感器130亦耦合於接地端。因此,控制調節電路124得以對可變電容器134及136進行動態的調節,俾調節供應給位在充電柵108之上方的內與外線圈之功率。
在一實施例中,使控制調節電路124構成為調節TCP線圈而提供相對於外線圈120更多的功率給內線圈122。在另一實施例中,使控制調節電路124構成為調節TCP線圈而提供相對於外線圈120較少的功率給內線圈122。在另一實施例中,供應給內線圈與外線圈的功率係以相同的分配供給功率及/或控制基板上方之徑向分布的離子密度(亦即,在晶圓存在時)。在另一實施例中,外線圈與內線圈之間的功率調節係基於對設置在夾具104之上的半導體晶圓進行蝕刻所定義出的處理參數加以調整。
在一實施中,使具有兩個可變電容器的電路構成為進行自動地調整而使兩個線圈之中的電流達到預定之比率。在本實施中,此比率為0.1至1.5。在另一實施中,電流約為相等。在另一實施例中,此比率為零,故僅將外線圈設定在操作狀態。
在一實施例中,電容器134及136係由連接至腔室102之電子面板的處理控制器所控制。可將電子面板耦合於網路連結系統,而根據特定的循環期間所需的處理操作,網路連結系統將操作特定的處理常規。因此,電子面板不僅可控制在腔室102之中所進行的蝕刻操作,並且可以控制電容器134及136之特定設定值。
在本實施例中,使充電柵108連接至其本身之獨立的RF功率。可以從分離的產生器或者從已經用於腔室之中的另一產生器獲得RF功率,例如,藉由分割分離之可調節的RF線路。就適用於充電柵108之操作的特定頻率設置分離之可調節的RF線路。然而,一般而言,吾人必須瞭解的是:供應給充電柵108的RF功率為分離及/或獨立,且除了此RF功率以外,還有RF線圈120/122所提供之TCP功率。在一實施例中,圖1A顯示獨立的RF產生器210,其耦合於匹配元件212,而連接至節點214。節點214為連接到充電柵108的連接點。在此,吾人可瞭解到:供應給充電柵108的功率係與由TCP線圈所提供之功率無關。在一實施例中,供應給內與外線圈的功率係由第一RF電源所提供,而供應給充電柵108的功率係由與第一RF電源無關的第二RF電源所提供。
在此所述,腔室為由外殼所界定出的處理腔室。外殼通常界定出腔室所需的結構。外殼係由金屬材料所製成,例如鋁或不銹鋼、或其它已知的材料。外殼的內側為夾具104且外殼的頂部係由介電體窗所界定。介電體窗可以呈任何已知的形狀,例如平板狀或圓頂狀。TCP線圈亦可呈現各種形狀,俾能與平板狀或圓頂狀的介電體窗、以及充電柵108匹配。
圖1B顯示根據本發明之一實施例的內線圈122及外線圈120的上視概略圖。舉一例而言,圖1B之橫剖面係代表與圖1A之線圈的連接關係。內線圈122係包括內線圈1及內線圈2、外線圈1及外線圈2。如圖1A所示,線圈末端之間的連接關係顯示相對於設置在對電路124的控制之中的電路的相對關係。根據本發明之一實施例,圖1B之圖式係顯示與腔室102之中所利用的TCP線圈之各內與外線圈相關的圓形繞線。吾人必須理解的是:線圈架構可以是其它形狀。可以是具有圓頂狀結構的空間型線圈,及非平板狀線圈分布的其它線圈形狀結構。因此,無論選出的形狀為何,皆可將充電柵108插入在線圈與介電體窗之間。
圖2顯示形成在基板107之上方的充電柵108之立體圖。在一實施例中,基板為介電材料。介電材料可以是剛性介電體的形式、或者可以是典型地用於印刷電路板(PCB)技術的剛性材料。PCB係能夠對沈積在其表面上、且被蝕刻而界定出特定之圖案的導電性材料提供機械性支撐。用於一實施例之中的特定圖案為連接至充電柵108之中心導電區域的輻條圖案。因此,充電柵係由開口區域(亦即,不具金屬材料的區域)所隔開的複數之金屬特徵部所界定而成。在一實施例中,充電柵為具有中心開口的盤狀體,而中心開口則為金屬性且連接至複數之導電性輻條或肋片(例如,幾何特徵部)。
在另一實施例中,PCB係由足以提供所需之剛性的層疊式介電體材料所製成,俾支撐住表面之上的圖案化金屬材料而界定出輻條圖案。代替地,不使用PCB材料的話,亦可使用陶瓷盤、或陶瓷與其它介電體材料的混合物,以及如鐵弗龍TM的介電體,俾支撐住用以界定出充電柵108的金屬圖案。又,不使用圖2所示之輻條圖案的話,充電柵108亦可由任何數目的圖案界定而成。基本上,只要界定在金屬材料之間的間隙或空隙得以使由線圈所提供之TCP功率被傳送到腔室之中的電漿的話,則圖案係可呈現任何數目的形狀。
根本上,充電柵為一電極,就電感式耦合而言,其雖為透通的,但可控制電容式耦合。就其本身而言,充電柵108具有電容式耦合電極的作用,其與腔室之TCP線圈無關。吾人必須瞭解的是:在某些情況下,充電柵108被稱為一種法拉第屏蔽或充電法拉第屏蔽。然而,充電柵108並不完全具有法拉第屏蔽的作用。然而,如果充電柵108被熟悉本項技術之人士稱為一種充電法拉第屏蔽時,應將充電柵之功能與實際的操作視為慣例。亦即,充電柵108為一電極,就電感式耦合而言,其雖為透通的,但仍可控制電容式耦合。
圖2亦顯示出連接到充電柵108之中心位置的帶狀部200。當安裝有帶狀部200時,中心位置係得以使RF功率分布到充電柵108的整個表面,而到達實質涵蓋介電體窗106之表面的外徑處。如下所示,對帶狀部200供以上述之獨立的RF功率。在所示例子中,界定出充電柵108的金屬材料為銅,且被圖案化在基板107之上。吾人必須瞭解的是:只要使充電柵108的表面各處有足夠的RF傳導,即使不使用銅,也可使用其它的金屬材料。在本實施例中,帶狀部200亦由銅所界定而成,俾提供RF功率與充電柵108之間的良好的電傳導。
圖3顯示:在將充電柵108安裝在介電體窗106與TCP線圈之間之前的介電體窗106的立體圖。如圖所示,介電體窗106為位在圖1A所示之腔室上方的陶瓷介電體。將TCP線圈與相關的迴路如所示般地配置在介電體窗106之上方。所示之外線圈120與內線圈122係具有饋入內線圈與外線圈的RF連接關係。亦顯示出用以使RF功率連接到線圈的支撐結構。
圖4顯示設置在介電體窗106之上方的充電柵108之立體圖。如圖所示,將充電柵108及其基板107設置介電體窗106之上方而實質呈平板配向。基板107與介電體窗106呈直接接觸。在另一實施例中,基板107與充電柵108之間具有空隙。在又一實施例,充電柵108係由金屬的材料界定而成,而不需要基板107。金屬的材料將具有足夠的剛性而得以呈間隔隔開之配向地設在介電體窗106之上方。代替地,如果充電柵108由金屬的材料形成而無基板的話,則可以將充電柵108直接設在介電體窗106之上方。因此,吾人必須瞭解的是:只要可以獨立地充電充電柵108、且將其設在、連接在、附設在、或定位在介電體窗106之上方的話,則充電柵108可以是任何數目的物理性架構。
圖5顯示根據本發明之一實施例的充電柵108之立體圖,其中將充電柵108設置在介電體窗106之上方且位在TCP線圈之下方。所示之充電柵108的照片為用以驗證充電柵108之效果的測試台。因此,利用粘著膠帶而將所示之充電柵108暫時地連接於介電體窗106。在產業實施時,不使用測試台所用之粘著膠帶而將充電柵108連接至系統。然而,圖5顯示出充電柵108相對於介電體窗106與TCP線圈122/120的相對位置。
圖中亦顯示連接到充電柵108之帶狀部200的延長帶201。使延長帶201構成為耦合於獨立RF功率,且為了簡化起見,顯示出連接點RF。如上所述,介電體窗106係位於腔室之上方,且腔室之外部係包含充電柵108與TCP線圈。於操作時,介電體窗106之底面,即充電柵108之所在側的反面,係面對著腔室之中的電漿。就其本身而言,如同TCP線圈,充電柵108係位在處理腔室的外部。
圖6顯示根據本發明之一實施例的介電體窗106與充電柵108之局部剖面圖。如圖所示,取決於所用之材料,介電體窗106通常具有約10mm至約50mm之範圍內的厚度。設置在介電體窗之上方的是基板107,而其約為0.5mm至約3mm之間,且較佳地為約1mm至約2mm之間,且公稱為約1.5mm(例如,約60密耳(千分之一吋))。吾人必須理解到:基板107可由各種材料界定而成,例如著名的PCB型材料、鐵弗龍、陶瓷等等。
圖6亦顯示TCP線圈120與122相對於充電柵108與介電體窗106之一般的佈置。在操作時,在腔室的內部產生電漿,且在毗鄰於介電體窗106之內表面處將界定出電漿鞘。同樣地,位在夾具104之上的晶圓202將經歷近接於晶圓202之表面的電漿鞘。電漿鞘之特定的控制與蝕刻處理將取決於由TCP線圈所提供之功率、供應給下電極(夾具104)的功率、供應給腔室的壓力、溫度、供應給腔室之功率的頻率、蝕刻化學物、及就操作所選出之配方的其它特定之設定值。
在操作時,將有近接於介電體窗106的電漿鞘。在一實施例中,將電漿鞘與充電柵108之間的大約距離定義為Z。從充電柵108所視時,此距離為界定出電漿阻抗的一變數。使充電柵108獨立地連接至分離的RF產生器,而從充電柵108的觀點而言,其係與特定的電漿阻抗匹配且調節到特定的電漿阻抗。
在一實施例中,充電柵108之金屬材料的厚度在約0.075mm至約0.5mm之間,且較佳為約0.3mm(例如,約5密耳(千分之一吋))。在本例子中,金屬材料為銅。然而,亦可使用其它的金屬材料,例如鋁、黃銅、銀、鍍銅等等。
圖7顯示RF產生器210與充電柵108之間的連接關係。充電柵108係藉由帶狀部200與延長帶201而電連接於產生器210。從充電柵108所視時,所示之匹配212係示意地連接至圖示成阻抗的負載,而將其表示成Z,即即R-jXc。產生器210包括方向性耦合器210a,其耦合至基於從充電柵108所視之負載而用以設定產生器210之頻率的調諧器210b。
在一實施例中,產生器210具有50歐姆之內部阻抗,且如果產生器察見在點230處有來自匹配212之50歐姆的負載時,則將匹配加以設定。如果在操作期間,匹配212在點230處呈現10歐姆的負載時,產生器210之50歐姆的阻抗與點230之10歐姆的負載之間的匹配將不再存在。在此種例子中,當從充電柵108視之時,在點230處的10歐姆係代表來自電漿之高反射功率。方向性耦合器210a接著將感測由失配所引起而供應給調諧器210b的反射/順向功率232。50歐姆與10歐姆的例子僅是一個例子。
因此,根據此例子,反射/順向功率232係用以調節產生器210的頻率設定。接著,基於調諧器210b對藉由讀取反射/順向功率232而提供之調節值,俾動態地設定產生器210的頻率。藉由改變可調節之產生器210的頻率,而使產生器210的阻抗與點230處的負載匹配。因此,在本實施例中,在約2MHz的低頻率對充電柵加以充電,且基於從產生器210所視之匹配的輸入側之阻抗加以調整。在一實施例中,根據處理期間的負載,調節係將產生器210的頻率設定在約1.5MHz至約2.5MHz之間,且較佳地,設定在約1.9MHz至約2.1MHz之間。在一實施例中,基於從匹配所視之負載而自動地調整連接至充電柵108之RF功率的頻率之設定值。
本自動調整在處理期間且基於電漿蝕刻腔室之中的狀態而隨著時間發生。自動調整為向上調整、向下調整、或周期性地向上與向下調整。例如,在2MHz附近的一調整範圍為約0.01+/-MHz至約1.0+/-MHz之間,且較佳在約0.05+/-MHz至約0.5+/-MHz之間。在一實施例中,由於RF功率(頻率與以瓦特為單位的功率等級)與TCP線圈之RF功率(頻率與以瓦特為單位的功率等級)的設定值完全無關,故可能進行本調節。在一實施例中,對充電柵108之調節可利用具備頻率調節功能之市售的產生器加以設定。
在一實施例中,RF產生器210在約2MHz之較低的頻率進行操作,俾能利用高能端而提供改良之控制,通常稱為低頻率之雙峰離子能量分布。例如,關於能量分布函數(IEDF),已知為較低的頻率提供具有雙峰分布之較高的能量。觀看介電體窗的內側時,此種較高的能量具有提供額外的能量給電漿鞘之作用,藉以控制靠近介電體窗之電漿的DC偏壓而能對非揮發性副產物在介電體窗之表面上的附著有較小的影響。
在操作時,除了所設定的頻率以外,還基於正在電漿腔室之中所進行的配方選擇施加於充電柵108之功率的設定值。熟知地,配方將取決於許多因素與待進行之所需的蝕刻操作。無限制地,這些因素包括腔室壓力、化學物、溫度、及由RF線圈所提供之功率等等。為了提供一額外的控制,亦有需要基於特定的配方而設定供應給充電柵108之特定的功率。隨著施加更多的功率,在所設定之頻率時傳送出的IEDF之能量輪廓的大小亦變大。代替地,根據配方所需的設定值,將施加較少的功率而減少能量的大小。供應給充電柵108之功率的例子在約5W至約1000W之間的範圍。某些例子則在50W至300W之間、及在75W至150W之間的範圍內進行操作。
在一實施例中,可以調節充電柵108之開槽(開口)的設計(亦即,基板207之未加以金屬化的部分),俾能使來自TCP RF系統之功率呈有效率的功率分布。在一實施例中,將TCP RF功率設定為約13.56MHz而觸發電漿。在一實施例中,在設計所有從中心到邊緣之開槽的開口之百分比時,較佳地使開口實質一致,俾盡可能使內-外線圈的功率分布型態維持成近似未設置充電柵的狀態。在一實施例中,靠近中心及其周圍的開口區域的百分比(亦即,無金屬材料的區域)約大於50%,而靠近外徑及其周圍的開口區域的百分比則約小於30%。在本例子中,靠近中心處的開口區域之百分比較大,且隨著半徑到達充電柵108的外邊緣而逐漸變大。在一實施例中進行此種最佳化,俾能使開口的百分比能夠決定穿過充電柵108之磁通量的大小,且因而使TCP功率分布而形成電漿。
亦可藉由調整施加於充電柵108的2MHz之功率而控制在線及離線清洗。在一實施例中,在線清洗需要以實質較低的功率供給充電柵,俾能在正規晶圓處理期間保持介電體窗乾淨。但離線清洗需要較高的功率或較高的離子能量,以濺射掉在線清洗功能未啟動的情況下、在晶圓處理期間已經沈積在介電體窗的內表面之上的金屬材料。亦可提供處理所需之約達13.56MHz功率的TCP電漿密度及清洗所需之達2MHz之離子能量的獨立控制。根據一實施例,就電漿產生而言,施於TCP線圈之13.56MHz的功率將較電容式耦合之2MHz的功率更有效率,而2MHz的功率則能更有效率地提高朝向介電體窗之內表面的離子能量,俾能有保持介電體窗實質乾淨的效果。
圖8A至圖8C顯示:當安裝有根據本發明之一實施例的充電柵108時,供應給腔室之控制量的例子。圖8A顯示施加於充電柵108的RF電壓係獨立地由其本身的功率所控制。圖8B顯示施加於充電柵108的RF電壓並不會受TCCT率的顯著影響。圖8C顯示施加於充電柵108的RF電壓並不會受PCP功率的顯著影響。進行的測試條件如下:通以200sccm的氬、將腔室壓力設定約為10米托耳、且在無掃掠時,將TCCT設定約為0.8。
圖9A顯示:當利用充電柵108進行實驗時,DC偏壓相對於TCP功率仍為可控制的情況。在將充電柵108設定在約2MHz及900W的情況下進行本實驗。圖9B顯示:當在具有充電柵108的情況下進行實驗時,DC偏壓亦將對腔室壓力有反應的情況。在本實驗中,將充電柵設定在2MHz及750W。根據選出之處理的所需配方,藉由進行圖9A與圖9B的這些實驗,俾收集數值資料而辨識出供給充電柵108之功率的最佳設定值。實際上,可以進行更多的實驗而限定出充電柵108之功率設定值的範圍,俾使系統的使用者得以基於所需之配方的處理條件而選擇大約的施加功率。
圖10A及圖10B所提供之數值資料係顯示出:當充電柵108連接至系統時,仍對DC偏壓施以控制。由於施於充電柵108之功率與RF TCP線圈之功率無關,故可能進行本控制。圖9A至圖10B係顯示在操作包括有100M歐姆的探測器與正連接於介電體窗之導線的腔室時、所收集到的數值資料。圖11顯示實施充電柵108時的電漿密度之圖形。對腔室所進行之本實驗的測試條件為:將TCP功率設定在500W、氬為200sccm、SF6為50sccm、及TCCT為1。
因此,上述圖式之中的例子所述之充電柵108係非常適於防止或控制電漿蝕刻操作期間沉積在介電體窗106的內側之上的副產物。對供給充電柵108具有獨立之RF功率控制係得以利用標準的配方設定值而進行完全的處理與配方控制,例如TCP功率、壓力、及其它變數。就其本身而言,將充電柵108設置在106處之風格屬性的介電體窗與TCP線圈之間並不會妨礙正規操作或用以達成特定之配方所預期的性能之所需的處理設定值。
在低頻率(亦即,約2MHz)下,對功率的獨立控制將得以使所需的設定有助於減少沉積在介電體窗106之上的蝕刻副產物,且將因此減少伴隨許多待處理之晶圓而所必須之清洗操作的次數。此外,如上所述,藉由減少沉積在介電體窗106之上的蝕刻副產物,能夠確保在處理一晶圓到處理另一晶圓的期間之中的更高的一致性且有較少之用以清洗介電體窗的停機。亦即,可以顯著地改善腔室清洗之間的平均時間(MTBC)。
在此所述,所謂「對供給充電柵108之RF功率的獨立控制」係欲使本架構能夠與使金屬的結構耦合於由RF線圈所提供之相同的功率之實施例區別之故。因此,在不需考慮供應給充電柵108的功率是如何設定的情況下,將可就RF線圈所提供的功率(TCP功率)加以控制。
雖然已藉由若干實施例說明本發明,但吾人必須理解:熟悉本技術之人士在閱讀前述說明書之內容及參照圖式之後,將可得知本發明之各種變更、變化、及其等同物。因此,只要在本發明之實際精神及申請專利範圍之內,本發明可預期包括所有的變更、變化、及其等同物。
102‧‧‧腔室
104‧‧‧夾具
106‧‧‧介電體窗
107‧‧‧基板
108‧‧‧充電柵
110‧‧‧下襯套
116‧‧‧邊緣環
118‧‧‧上襯套
120‧‧‧外線圈
122‧‧‧內線圈
124‧‧‧控制調節電路
126、160‧‧‧RF產生器
128、212‧‧‧匹配元件
130‧‧‧電感器
132‧‧‧電容器
134、136‧‧‧可變電容器
140、142、144、146、148、214‧‧‧節點
162‧‧‧偏壓匹配器
164‧‧‧濾波器
200‧‧‧帶狀部
201‧‧‧延長帶
202‧‧‧晶圓
210‧‧‧獨立的RF產生器
210a‧‧‧方向性耦合器
210b‧‧‧調諧器
230‧‧‧點
232‧‧‧反射/順向功率
IC1、IC2‧‧‧內線圈
OC1、OC2‧‧‧外線圈
圖1A顯示根據本發明之一實施例的蝕刻操作用的電漿處理系統。
圖1B顯示根據本發明之一實施例的內線圈與外線圈的概略上視圖。
圖2顯示根據本發明之一實施例的充電柵之例子。
圖3顯示根據本發明之一實施例的設置充電柵之前的介電體窗之例子。
圖4顯示根據本發明之一實施例的設置在介電體窗之上方的充電柵。
圖5顯示根據本發明之一實施例的設置在介電體窗與TCP線圈之間的充電柵。
圖6顯示根據本發明之一實施例的被界定在TCP線圈之下方的介電體窗與充電柵之例示的橫剖面圖。
圖7顯示根據本發明之一實施例的連接至充電柵之獨立RF功率的例子,其頻率係可調節且可就特定的配方設定成不同的功率設定值(不影響對獨立之TCP功率的控制)。
圖8A至圖11顯示根據本發明之一實施例的充電柵,並顯示其如何不影響處理參數的控制,而仍對減少或消除在疑慮的介電體窗之內側之上的副產物的堆積提供控制。
102‧‧‧腔室
104‧‧‧夾具
106‧‧‧介電體窗
107‧‧‧基板
108‧‧‧充電柵
110‧‧‧下襯套
116‧‧‧邊緣環
118‧‧‧上襯套
120‧‧‧外線圈
122‧‧‧內線圈
124‧‧‧控制調節電路
126、160‧‧‧RF產生器
128、212‧‧‧匹配元件
130‧‧‧電感器
132‧‧‧電容器
134、136‧‧‧可變電容器
140、142、144、146、148、214‧‧‧節點
162‧‧‧偏壓匹配器
164‧‧‧濾波器
210‧‧‧獨立的RF產生器
权利要求:
Claims (20)
[1] 一種電漿處理腔室,包含:一靜電夾具,用以接納一基板;一介電體窗,連接至該電漿處理腔室的一頂部,該介電體窗之一內側係面對位在該靜電夾具之上方的一電漿處理區域且該介電體窗的一外側係位在該電漿處理區域的外部;一組內與外線圈,設置在該介電體窗之外側的上方,而該組內與外線圈係連接至一第一RF電源;及一充電柵,設置在該介電體窗之外側與該組內與外線圈之間,而充電柵係連接至與該第一RF電源無關的一第二RF電源。
[2] 如申請專利範圍第1項之電漿處理腔室,其中該充電柵係由複數之金屬的特徵部所界定而成,而該複數之金屬的特徵部則由開口區域所隔開。
[3] 如申請專利範圍第1項之電漿處理腔室,其中連接至該組內與外線圈的該第一RF電源係提供變壓耦合電漿(TCP)功率。
[4] 如申請專利範圍第1項之電漿處理腔室,其中該充電柵係由具有金屬的特徵部之一基板所界定而成。
[5] 如申請專利範圍第4項之電漿處理腔室,其中該充電柵的該基板與該介電體窗的外側接觸。
[6] 如申請專利範圍第1項之電漿處理腔室,其中該第二RF電源之頻率係可調整,俾能在操作時與該電漿處理腔室之中的一電漿之一負載匹配。
[7] 如申請專利範圍第1項之電漿處理腔室,其中該充電柵為具有一中心開口的一盤狀體,而該中心開口為金屬性且連接至導電性的複數之輻條。
[8] 一種腔室,包含:一外殼;一夾具,用以支撐該外殼之中的一晶圓;一外殼頂部,由一介電體窗所界定之該外殼的頂部;一充電柵,設置在該介電體窗之上方;一組TCP線圈,設置在該充電柵之上方;及一RF功率,連接至該充電柵,且獨立於該組TCP線圈。
[9] 如申請專利範圍第8項之腔室,其中該充電柵係包括複數之導電性特徵部,而該複數之導電性特徵部則由開口區域所隔開。
[10] 一種腔室,包含:一夾具,用以支撐該腔室之中的一晶圓;一腔室頂部,由一介電體窗所界定;一充電柵,設置在該介電體窗之上方;一組TCP線圈,設置在該充電柵之上方;及一RF功率,連接至該充電柵,且獨立於該組TCP線圈。
[11] 如申請專利範圍第10項之腔室,其中該充電柵係包括複數之導電性特徵部,而該複數之導電性特徵部則由開口區域所隔開。
[12] 如申請專利範圍第10項之腔室,其中連接至該充電柵的該RF功率係與連接至該組TCP線圈的一RF功率分離。
[13] 一種晶圓的處理方法,用於在一電漿蝕刻腔室之中處理一晶圓,包含以下步驟:一第一RF功率的施加步驟,施加一第一RF功率於該電漿蝕刻腔室之一上介電體窗的上方,而將該第一RF功率施加於一組內與外線圈;一第二RF功率的施加步驟,施加一第二RF功率於該電漿蝕刻腔室之該上介電體窗的上方,而將該第二RF功率施加於設置在該組內與外線圈與該介電體窗之間的一充電柵;及一第一RF功率的設定步驟,與設定該第二RF功率呈無關地設定該第一RF功率,其中由該第二RF功率所施加的一頻率與一功率等級係不同於由該第一RF功率所施加的一頻率與一功率等級。
[14] 如申請專利範圍第13項之晶圓的處理方法,其中將該第二RF功率的頻率設定在1.5MHz與2.5MHz之間的一低頻率,且根據從該充電柵所視來自該電漿蝕刻腔室之中受處理電漿的負載,調節該第二RF功率的頻率。
[15] 如申請專利範圍第13項之晶圓的處理方法,其中以瓦特為單位的該第二RF功率的功率等級係與以瓦特為單位的該第一RF功率的功率等級無關而可調整。
[16] 如申請專利範圍第13項之晶圓的處理方法,其中將施加於TCP線圈的該第一RF功率的頻率設定在約13.56MHz。
[17] 如申請專利範圍第13項之晶圓的處理方法,其中將該充電柵配置成覆蓋該介電體窗的一外表面。
[18] 如申請專利範圍第17項之晶圓的處理方法,其中覆蓋該介電體窗的該外表面係包括界定出該充電柵之導電性的特徵部之間的空隙。
[19] 如申請專利範圍第13項之晶圓的處理方法,其中該第二RF電源為一產生器,在該電漿蝕刻腔室之中的處理期間,具有基於從一匹配所視之一負載而自動調整該第二RF功率之一頻率所需的調節。
[20] 如申請專利範圍第19項之晶圓的處理方法,其中該自動調整係基於該電漿蝕刻腔室之中的狀態而在處理期間動態地隨著時間而發生。
类似技术:
公开号 | 公开日 | 专利标题
TWI575597B|2017-03-21|電漿腔室之充電柵
US10541113B2|2020-01-21|Chamber with flow-through source
TWI488213B|2015-06-11|法拉第屏及使用該法拉第屏的電漿處理室
US20180366351A1|2018-12-20|Oxygen compatible plasma source
US9011637B2|2015-04-21|Plasma processing apparatus and method of manufacturing semiconductor device
US20150170943A1|2015-06-18|Semiconductor system assemblies and methods of operation
US20150170879A1|2015-06-18|Semiconductor system assemblies and methods of operation
JP5901887B2|2016-04-13|プラズマ処理装置のクリーニング方法及びプラズマ処理方法
WO2001048792A1|2001-07-05|Plasma reactor with dry clean antenna and method
TW201807738A|2018-03-01|用以蝕刻高深寬比特徵部之多頻功率調變
TW201911974A|2019-03-16|用於電漿處理的分佈式電極陣列
TWI515761B|2016-01-01|具有變壓器耦合型電漿線圈區域間的電漿密度去耦合結構之法拉第屏蔽
KR20140135663A|2014-11-26|패러데이 차폐부의 온도 제어
US11049537B2|2021-06-29|Additive patterning of semiconductor film stacks
US20200234928A1|2020-07-23|Semiconductor plasma processing equipment with wafer edge plasma sheath tuning ability
KR20160027343A|2016-03-10|기판 처리 장치 및 기판 처리 방법
同族专利:
公开号 | 公开日
CN103918064B|2017-08-22|
US20180226233A1|2018-08-09|
TWI575597B|2017-03-21|
KR20140051250A|2014-04-30|
US20120322270A1|2012-12-20|
KR101902607B1|2018-09-28|
CN103918064A|2014-07-09|
WO2012173769A2|2012-12-20|
JP2014519717A|2014-08-14|
JP6045574B2|2016-12-14|
US10431434B2|2019-10-01|
WO2012173769A3|2014-05-15|
US9966236B2|2018-05-08|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JPS60169139A|1984-02-13|1985-09-02|Canon Inc|Vapor-phase treating apparatus|
US4918031A|1988-12-28|1990-04-17|American Telephone And Telegraph Company,At&T Bell Laboratories|Processes depending on plasma generation using a helical resonator|
US5433812A|1993-01-19|1995-07-18|International Business Machines Corporation|Apparatus for enhanced inductive coupling to plasmas with reduced sputter contamination|
TW293983B|1993-12-17|1996-12-21|Tokyo Electron Co Ltd||
EP0685873B1|1994-06-02|1998-12-16|Applied Materials, Inc.|Inductively coupled plasma reactor with an electrode for enhancing plasma ignition|
US5540800A|1994-06-23|1996-07-30|Applied Materials, Inc.|Inductively coupled high density plasma reactor for plasma assisted materials processing|
US5597438A|1995-09-14|1997-01-28|Siemens Aktiengesellschaft|Etch chamber having three independently controlled electrodes|
TW327236B|1996-03-12|1998-02-21|Varian Associates|Inductively coupled plasma reactor with faraday-sputter shield|
US6308654B1|1996-10-18|2001-10-30|Applied Materials, Inc.|Inductively coupled parallel-plate plasma reactor with a conical dome|
JP3598717B2|1997-03-19|2004-12-08|株式会社日立製作所|プラズマ処理装置|
US6132551A|1997-09-20|2000-10-17|Applied Materials, Inc.|Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil|
US6149760A|1997-10-20|2000-11-21|Tokyo Electron Yamanashi Limited|Plasma processing apparatus|
KR20010032824A|1997-12-05|2001-04-25|테갈 코퍼레이션|증착 실드를 갖는 플라즈마 리액터|
US6280563B1|1997-12-31|2001-08-28|Lam Research Corporation|Plasma device including a powered non-magnetic metal member between a plasma AC excitation source and the plasma|
US6080278A|1998-01-27|2000-06-27|Honeywell-Measurex Corporation|Fast CD and MD control in a sheetmaking machine|
US6197165B1|1998-05-06|2001-03-06|Tokyo Electron Limited|Method and apparatus for ionized physical vapor deposition|
US6287435B1|1998-05-06|2001-09-11|Tokyo Electron Limited|Method and apparatus for ionized physical vapor deposition|
DE59908941D1|1998-05-28|2004-04-29|Siemens Ag|Kraftstoffeinspritzventil für brennkraftmaschinen|
US6164241A|1998-06-30|2000-12-26|Lam Research Corporation|Multiple coil antenna for inductively-coupled plasma generation systems|
US6248251B1|1999-02-19|2001-06-19|Tokyo Electron Limited|Apparatus and method for electrostatically shielding an inductively coupled RF plasma source and facilitating ignition of a plasma|
US6447637B1|1999-07-12|2002-09-10|Applied Materials Inc.|Process chamber having a voltage distribution electrode|
JP3709552B2|1999-09-03|2005-10-26|株式会社日立製作所|プラズマ処理装置及びプラズマ処理方法|
US6447636B1|2000-02-16|2002-09-10|Applied Materials, Inc.|Plasma reactor with dynamic RF inductive and capacitive coupling control|
US6367412B1|2000-02-17|2002-04-09|Applied Materials, Inc.|Porous ceramic liner for a plasma source|
JP5047423B2|2000-03-31|2012-10-10|ラムリサーチコーポレーション|誘導結合型プラズマエッチング装置|
US6531030B1|2000-03-31|2003-03-11|Lam Research Corp.|Inductively coupled plasma etching apparatus|
US6422173B1|2000-06-30|2002-07-23|Lam Research Corporation|Apparatus and methods for actively controlling RF peak-to-peak voltage in an inductively coupled plasma etching system|
JP2001326999A|2000-05-18|2001-11-22|Olympus Optical Co Ltd|圧電構造体の加工方法および複合圧電体の製造方法|
US6632322B1|2000-06-30|2003-10-14|Lam Research Corporation|Switched uniformity control|
US6446572B1|2000-08-18|2002-09-10|Tokyo Electron Limited|Embedded plasma source for plasma density improvement|
JP2002237486A|2001-02-08|2002-08-23|Tokyo Electron Ltd|プラズマ処理装置およびプラズマ処理方法|
US6685799B2|2001-03-14|2004-02-03|Applied Materials Inc.|Variable efficiency faraday shield|
US6592710B1|2001-04-12|2003-07-15|Lam Research Corporation|Apparatus for controlling the voltage applied to an electrostatic shield used in a plasma generator|
WO2003029513A1|2001-09-28|2003-04-10|Tokyo Electron Limited|Hybrid plasma processing apparatus|
US6555745B1|2001-10-19|2003-04-29|Medtronic, Inc.|Electrical interconnect between an articulating display and a PC based planar board|
US6666982B2|2001-10-22|2003-12-23|Tokyo Electron Limited|Protection of dielectric window in inductively coupled plasma generation|
JP4741839B2|2002-07-31|2011-08-10|ラムリサーチコーポレーション|通電されたファラデーシールドにかかる電圧を調整するための方法|
US7223321B1|2002-08-30|2007-05-29|Lam Research Corporation|Faraday shield disposed within an inductively coupled plasma etching apparatus|
US7691243B2|2004-06-22|2010-04-06|Tokyo Electron Limited|Internal antennae for plasma processing with metal plasma|
US7776156B2|2005-02-10|2010-08-17|Applied Materials, Inc.|Side RF coil and side heater for plasma processing apparatus|
JP2007012734A|2005-06-29|2007-01-18|Matsushita Electric Ind Co Ltd|プラズマエッチング装置及びプラズマエッチング方法|
US7591935B2|2005-12-14|2009-09-22|Tokyo Electron Limited|Enhanced reliability deposition baffle for iPVD|
US7605008B2|2007-04-02|2009-10-20|Applied Materials, Inc.|Plasma ignition and complete faraday shielding of capacitive coupling for an inductively-coupled plasma|
CN101647099B|2007-05-31|2011-08-10|株式会社爱发科|等离子体处理装置的干式清洁方法|
JP2009021492A|2007-07-13|2009-01-29|Samco Inc|プラズマ反応容器|
US20100018648A1|2008-07-23|2010-01-28|Applied Marterials, Inc.|Workpiece support for a plasma reactor with controlled apportionment of rf power to a process kit ring|
JP5586286B2|2010-03-19|2014-09-10|株式会社日立ハイテクノロジーズ|プラズマ処理装置|
JP5639866B2|2010-12-03|2014-12-10|株式会社日立ハイテクノロジーズ|プラズマ処理装置|
US9767996B2|2015-08-21|2017-09-19|Lam Research Corporation|Application of powered electrostatic faraday shield to recondition dielectric window in ICP plasmas|US9793126B2|2010-08-04|2017-10-17|Lam Research Corporation|Ion to neutral control for wafer processing with dual plasma source reactor|
US9530618B2|2012-07-06|2016-12-27|Infineon Technologies Ag|Plasma system, chuck and method of making a semiconductor device|
US9245761B2|2013-04-05|2016-01-26|Lam Research Corporation|Internal plasma grid for semiconductor fabrication|
US9230819B2|2013-04-05|2016-01-05|Lam Research Corporation|Internal plasma grid applications for semiconductor fabrication in context of ion-ion plasma processing|
US9147581B2|2013-07-11|2015-09-29|Lam Research Corporation|Dual chamber plasma etcher with ion accelerator|
US9484214B2|2014-02-19|2016-11-01|Lam Research Corporation|Systems and methods for improving wafer etch non-uniformity when using transformer-coupled plasma|
US9679749B2|2014-09-26|2017-06-13|Lam Research Corporation|Gas distribution device with actively cooled grid|
CN105695936B|2014-11-26|2018-11-06|北京北方华创微电子装备有限公司|预清洗腔室及等离子体加工设备|
US10163642B2|2016-06-30|2018-12-25|Taiwan Semiconductor Manufacturing Company, Ltd.|Semiconductor device, method and tool of manufacture|
KR101848908B1|2016-09-19|2018-05-15|인베니아 주식회사|유도 결합 플라즈마 처리 장치|
US10009028B2|2016-09-30|2018-06-26|Lam Research Corporation|Frequency and match tuning in one state and frequency tuning in the other state|
US10896806B2|2016-11-03|2021-01-19|En2Core Technology, Inc.|Inductive coil structure and inductively coupled plasma generation system|
US10903046B2|2016-11-03|2021-01-26|En2Core Technology, Inc.|Inductive coil structure and inductively coupled plasma generation system|
US10541114B2|2016-11-03|2020-01-21|En2Core Technology, Inc.|Inductive coil structure and inductively coupled plasma generation system|
CN108878242B|2017-05-10|2021-01-29|北京北方华创微电子装备有限公司|一种等离子体装置|
US10283329B2|2017-07-10|2019-05-07|Applied Materials, Inc.|ICP source for M and W-shape discharge profile control|
CN109712859B|2017-10-25|2021-06-08|北京北方华创微电子装备有限公司|一种腔室|
KR102207755B1|2018-05-28|2021-01-26|주식회사 히타치하이테크|플라스마 처리 장치|
CN110875168A|2018-08-31|2020-03-10|北京北方华创微电子装备有限公司|反应腔室及等离子体加工设备|
US20200234920A1|2019-01-22|2020-07-23|Lam Research Corporation|Coil and window for plasma processing system|
CN111048396A|2019-12-26|2020-04-21|北京北方华创微电子装备有限公司|半导体设备的介质窗的清洗方法以及相关半导体加工设备|
CN113113280A|2020-01-09|2021-07-13|江苏鲁汶仪器有限公司|具有开合法拉第组件的等离子体处理系统及其开合法拉第组件|
US20210343508A1|2020-04-30|2021-11-04|Applied Materials, Inc.|Metal oxide preclean chamber with improved selectivity and flow conductance|
US20210373054A1|2020-05-29|2021-12-02|Mks Instruments, Inc.|System and Method for Arc Detection Using a Bias RF Generator Signal|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
US13/161,372|US9966236B2|2011-06-15|2011-06-15|Powered grid for plasma chamber|
[返回顶部]